Dr Oliver Mathematics Mathematics: Higher 2014 Paper 1: Non-Calculator 1 hour 30 minutes

The total number of marks available is 70. You must write down all the stages in your working.

Section A

1. A sequence is defined by the recurrence relation

$$u_{n+1} = \frac{1}{3}u_n + 1$$
, with $u_2 = 15$.

(2)

What is the value of u_4 ?

- A. $2\frac{1}{9}$
- B. $2\frac{1}{3}$
- C. 3
- D. 30
- 2. The diagram shows a circle with centre C(1,2) and the tangent at T(3,-1). (2)

What is the gradient of this tangent?

A. $\frac{1}{4}$

B. $\frac{2}{3}$

- C. $\frac{3}{2}$
- D. 4

3. If

$$\log_4 12 - \log_4 x = \log_4 6,\tag{2}$$

what is the value of x?

- A. 2
- B. 6
- C. 18
- D. 72

4. If

$$3\sin x - 4\cos x\tag{2}$$

is written in the form

$$k\cos(x-a)$$
,

what are the values of $k \cos a$ and $k \sin a$?

- A. $k \cos a = -3$ and $k \sin a = 4$
- B. $k \cos a = 3$ and $k \sin a = -4$
- C. $k \cos a = 4$ and $k \sin a = -3$
- D. $k \cos a = -4$ and $k \sin a = 3$

5. Find

$$\int (2x+9)^5 \, \mathrm{d}x. \tag{2}$$

- A. $10(2x+9)^4 + c$
- B. $\frac{1}{4}(2x+9)^4+c$
- C. $10(2x+9)^6 + c$
- D. $\frac{1}{12}(2x+9)^6 + c$

6. Given that

$$\mathbf{u} = \begin{pmatrix} -3\\1\\0 \end{pmatrix} \text{ and } \mathbf{v} = \begin{pmatrix} 1\\-1\\2 \end{pmatrix}, \tag{2}$$

find $2\mathbf{u} - 3\mathbf{v}$ in component form.

A.
$$\begin{pmatrix} -9\\5\\-6 \end{pmatrix}$$

B.
$$\begin{pmatrix} -9 \\ -1 \\ -4 \end{pmatrix}$$

C.
$$\begin{pmatrix} -3 \\ -1 \\ 6 \end{pmatrix}$$

D.
$$\begin{pmatrix} 11 \\ -5 \\ 4 \end{pmatrix}$$

7. A right-angled triangle has sides and angles as shown in the diagram.

What is the value of $\sin 2a$?

A.
$$\frac{8}{17}$$

B.
$$\frac{3}{\sqrt{34}}$$

C.
$$\frac{15}{17}$$

D.
$$\frac{6}{\sqrt{34}}$$

8. What is the derivative of

$$(4 - 9x^4)^{\frac{1}{2}}$$

(2)

A.
$$-\frac{9}{2}(4-9x^4)^{-\frac{1}{2}}$$

B.
$$\frac{1}{2}(4-9x^4)^{-\frac{1}{2}}$$

C.
$$2(4-9x^4)^{-\frac{1}{2}}$$

D.
$$-18x^3(4-9x^4)^{-\frac{1}{2}}$$

9.

$$\sin x + \sqrt{3}\cos x$$

(2)

(2)

(2)

cvan be written as

$$2\cos(x-\tfrac{1}{6}\pi).$$

The maximum value of $\sin x + \sqrt{3}\cos x$ is 2.

What is the maximum value of $5 \sin 2x + 5\sqrt{3} \cos 2x$?

- A. 20
- B. 10
- C. 5
- D. 2

10. A sequence is defined by the recurrence relation

$$u_{n+1} = (k-2)u_n + 5$$
, with $u_0 = 3$.

For what values of k does this sequence have a limit as $n \to \infty$?

- A. -3 < k < -1
- B. -1 < k < 1
- C. 1 < k < 3
- D. k < 3

11. The diagram shows part of the graph of y = f(x).

Which of the following diagrams could be the graph of y = 2 f(x) + 1?

12. A function f, defined on a suitable domain, is given by

$$f(x) = \frac{6x}{x^2 + 6x - 16}.$$

What restrictions are there on the domain of f?

A.
$$x \neq -8$$
 or $x \neq 2$

A.
$$x \neq -8$$
 or $x \neq 2$
B. $x \neq -4$ or $x \neq 4$

C.
$$x \neq 0$$

(2)

13. What is the value of

$$\sin\frac{1}{3}\pi - \cos\frac{5}{4}\pi? \tag{2}$$

A.
$$\frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}}$$

B.
$$\frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}}$$

C.
$$\frac{1}{2} - \frac{1}{\sqrt{2}}$$

D.
$$\frac{1}{2} + \frac{1}{\sqrt{2}}$$

14. The vectors

$$\mathbf{u} = \begin{pmatrix} 1 \\ k \\ k \end{pmatrix} \text{ and } \mathbf{v} = \begin{pmatrix} -6 \\ 2 \\ 5 \end{pmatrix}$$
 (2)

are perpendicular.

What is the value of k?

A.
$$-\frac{6}{7}$$

B.
$$-1$$

D.
$$\frac{6}{7}$$

15. The diagram shows a cubic curve passing through (-1,0), (2,0), and (0,-8). (2)

What is the equation of the curve?

A.
$$y = -2(x+1)^2(x+2)$$

C.
$$y = 4(x+1)^2(x-2)$$

D.
$$y = -8(x+1)(x-2)^2$$

16. The unit vectors \mathbf{a} and \mathbf{b} are such that

$$\mathbf{a.b} = \frac{2}{3}.$$

Determine the value of

$$\mathbf{a}.(\mathbf{a} + 2\mathbf{b}).$$

A. $\frac{2}{3}$

B. $\frac{4}{3}$

C. $\frac{7}{3}$

D. 3

17.

$$3x^2 + 12x + 17$$
 (2)

(2)

(2)

is expressed in the form

$$3(x+p)^2 + q.$$

What is the value of q?

A. 1

B. 5

C. 17

D. -19

18. What is the value of

$$1 - 2\sin^2 15^{\circ}$$
?

A. $\frac{1}{2}$

B. $\frac{3}{4}$

C. $\frac{\sqrt{3}}{2}$

D. $\frac{7}{8}$

19. The diagram shows a regular hexagon \overrightarrow{PQRSTW} . \overrightarrow{PW} and \overrightarrow{PQ} represent vectors \mathbf{u} and \mathbf{v} respectively.

What is \overrightarrow{SW} in terms of **u** and **v**?

A.
$$-\mathbf{u} - 2\mathbf{v}$$

B.
$$-\mathbf{u} - \mathbf{v}$$

C.
$$\mathbf{u} - \mathbf{v}$$

D.
$$\mathbf{u} + 2\mathbf{v}$$

20. Evaluate

$$2 - \log_5 \frac{1}{25}. (2)$$

(2)

A.
$$-3$$

C.
$$\frac{3}{2}$$

Section B

- 21. A curve has equation $y = 3x^2 x^3$.
 - (a) Find the coordinates of the stationary points on this curve and determine their nature. (6)
 - (b) State the coordinates of the points where the curve meets the coordinate axes and sketch the curve. (2)
- 22. For the polynomial $6x^3 + 7x^2 + ax + b$,
 - (x+1) is a factor, and

• 72 is the remainder when it is divided by (x-2).

- (a) Determine the values of a and b. (4)
- (b) Hence factorise the polynomial completely. (3)

(4)

23. (a) Find P and Q, the points of intersection of the line

$$y = 3x - 5$$

and the circle C_1 with equation

$$x^2 + y^2 + 2x - 4y - 15 = 0.$$

T is the centre of C_1 .

(b) Show that PT and QT are perpendicular. (3)

A second circle C_2 passes through P, Q, and T.

- (c) Find the equation of C_2 . (3)
- 24. Two variables, x and y, are related by the equation (5)

$$y = ka^x$$
.

When $\log_9 y$ is plotted against x, a straight line passing through the points (0,2) and (6,5) is obtained, as shown in the diagram.

Find the values of k and a.